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ABSTRACT 

The methods used t o  in- f l igh t  c a l i b r a t e  t he  point ing d i rec t ion  

of the  Mariner Vents-Mercury 1973 spacecraf t  high gain antenna and the  achieved 

antenna pointing accuracy are described. The ove ra l l  point ing ca l ib ra t ion  

was accomplished by perfonning ca l ib ra t ion  sequences a t  a rider of points  

along the  spacecraf t  t ra jec tory .  

the  antenna about t he  expected spacecraft-earth vector t o  determine systematic 

pointing errors .  

w e d  in t he  cal ibrat ion.  and the  ca l ib ra t ion  and point ing s t r a t egy  and results 
are discussed. 

Each of these consisted of a r t i c u l a t i n g  

The high gain antenna pointing system, the  e r r o r  model 

V i  JPL Technical Yemorandum 33-740 



SECTION I 

INTRODUCTION 

The Mariner Venus-Mercury 1973 (MVM'73) spacecraf t  c a r r i e d  a two degree- 

of-freedom gimbaled high gain antenna (HGA). 
throughout t h e  mission: t he  transmission of high rate science and engineering 

telemetry t o  t h e  Earth, and the  Radio Science experiments. The spacecraf t  had 

two transmit ters ,  an  S-band (2.295 GHz) which c a r r i e d  telemetry data,  and an 

X-band (8.415 GHz) which was modulated by ranging code. Optimum pointing w a s  

required a t  t h e  encounters t o  support high rate telemetry (117.6 k i l o b i t s  per 

second (kbps) a t  Venus and 22.05 kbps a t  Mercury) and t h e  dual  frequency occulta- 

t i o n  Radio Science experiments. 

This HGA w a s  used f o r  two purposes 

Spacecraft system requirements (Reference 1) d id  not  include a HGA point- 

i n g  accurazy requirement. However, t h e  desired telecommunications performance 

described above d i c t a t ed  antenna pointing e r r o r  be held t o  less than 1.0 deg, 

with a goal of pointing e r r o r  as s m a l l  as 0.7 deg. 

pointing accuracy, an in-f l ight  c a l i b r a t i o n  of HGA pointing w a s  necessary. 

This c a l i b r a t i o n  w a s  performed using t h e  X-band main lobe because of its narrow 

beamwidth ( the  half-beamwidth was 0.9 deg a t  t h e  3dB point) .  

In  order  t o  achieve t h i s  

The in-f l ight  c a l i b r a t i o n  was achieved by s t a t i s t i c a l l y  estimating me- 
chanical,  e l ec t ron ic  and electromagnetic e r r o r s  a r i s i n g  i n  sensors, antenna 

s t r u c t u r e s  and antenna rad ia t ion  pa t t e rns  during f l i g h t ,  

boresight pointing e r r o r  can only be measured with respect  t o  t h e  spacecraft-  

Earth d i r ec t ion ,  many c a l i b r a t i o n  sequences were required to  charac te r ize  

and compensate f o r  these e r r o r s  over an extended range. 

c a l i b r a t i o n  s t r a t egy  which ca l l ed  f o r  s eve ra l  c a l i b r a t i o n s  space i n  t i m e  t o  

cover a wide range of HGA d i r ec t ions ,  

Because t h e  HGA 

This d i c t a t ed  a 

JPL Technical Memorandum 33-740 1 



SECTION I1 

HIGH GAIN IUTEWA POINTING SYSTEM 

The high gain antenna point ing r e l a t i v e  to  t h e  Mariner 10 spacecraf t  

was accomplished by a r t i c u l a t i n g  the antenna d ish  about its two cont ro l  axes. 
A three-axis s t a b i l i z e d  spacecraf t  o r ien ta t ion  was maintained by a cold 

gas react ion cont ro l  system u t i l i z i n g  c e l e s t i a l  sensor e r r o r  s igna ls ,  i n e r t i a l  

gyro e r r o r  s igna l s  or a combination of the two systems. A view of the space- 

c r a f t  and the HGA as given i n  Figure 1. 

After spacecraf t  launch, the HGA boom w a s  deployed t o  a predetermined 

nominal posi t ion,  which allowed the dish t o  point  i n  a l l  d i rec t ions  except 

those obscured by the spacecraf t .  

which control led the point ing relative t o  the spacecraf t ,  was comprised of 

two independent ac tua tors ,  boom and dish,  and associated e lec t ronics .  The 

boom ac tua tc r  w a s  munted a t  the  t i p  of the antenna boom which remained 

i n  a f ixed or ien ta t ion  r e l a t i v e  t o  the spacecraf t  a f t e r  deployment. 

d i sh  ac tua tor  was mounted perpendicular t o  the  bocm ac tua tor  with the antenna 

d ish  mounted so t h a t  the  boresight  was perpendicular t o  the d ish  actuator .  

The Ar t icu la t ion  and Pointing Subsystem (APS), 

The 

The APS functioned i n  two modes, Pos i t ion  and Incremental, and a t  

In  the Posi t ion two ac tua tor  slew rates, 0.125 deg/sec and 1.0 deg/sec. 

Mode the  ac tua tor  could be commanded t o  any pos i t ion  within i ts  range with 

a reso lu t ion  of 0.125 deg. 

slewed a f ixed increment as l a rge  as 40.92 deg with a reso lu t ion  of 0.04 

deg. 

In  the Incremental Mode the actuator  could be 

A s implif ied block diagram of APS is given i n  F ig t r e  2. 

Telemetry provided information about spacecraf t  and HGA angular pos i t ion .  

Telemetry measurements from the c e l e s t i a l  sensors  provided a t t i t u d e  cont ro l  

angular pos i t ion  information with a resolut ion of 0.02 deg i n  p i t ch  and yaw 

and 0.03 deg i n  r o l l .  

provided coarse and f i n e  telemetry measurements with a resolut ion of 2.0 
deg and 0.04 deg, respect ively.  

may be found i n  Reference 2. 

Potentiometers geared t o  the actuator  output s h a f t s  

Additional d e t a i l s  on spacecraf t  mechanization 

2 

The nominal b o m  and dish ac tua tor  angles t o  point  the antenna i n  

a desired d i rec t ion  were calculated i n  the error-free system. 

(primary and secondary) were possible ,  subjec t  t o  cons t ra in ts  imposed by 
Two so lu t ions  

JPL Technical Memorandum 33-740 
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t he  electrical  and mechanical configuration of t he  APS. (These cons t ra in ts  

are described i n  Figure 3.) The ac tua tors  were r e s t r i c t e d  so t h a t  t he  d i sh  

ac tua tor  output s h a f t  angle must lay  between -4.5 and +184.5 deg while boom 

l a y  between 0 and 255 deg. 

p a i r s  t o  point the  HCA i n  many of tha desired direct ione.  

Within these cons t r a in t s  there  were two boowdish 

By def in i t i on  the  prlmary so lu t ion  pair contained d i sh  ac tua tor  angles 

less than 90 deg while t he  secondary so lu t ion  p a i r  had dish ac tua tor  angles  

grea te r  than 90 dog. 

and secondary so lu t ions  i s  i l l u o t r a t e d  i n  Figure 3. 

launched November 3, 1973, only the  primary so lu t ion  could have been used 

i n  the f i r s t  75 days and only the  secondary so lu t ion  could have been used a f t e r  

135 days. 

occurred on day 111, 1 7  days following Venus encounter. 

The n o a n a l  Earth t r ack  i n  boom and d ish  for t he  primary 

For the  MVM'73 mission, 

The re-orientation t o  the  secondary so lu t ion ,  ca l led  the  f l ip-f lop,  

I I I 1 

B 

200 

100 

DISH SECONDARY - 

PRIMARY TO SECONDARY 

DISH SECONDARY - 

PRIMARY TO SECONDARY 

ACHIEVABLE BOOM 
ANGLE LOWER BOUND ACHIEVABLE DISH 

ANGLE LOWER BOUND 

.-.-. .-.-. 
VENUS MERCURY 

0 50 100 150 200 
T l M E  OF FLIGHT, Qyc 

Fig. 3 Nominal HGA Pointing Configuration 
f o r  Boom and Dish Actuators 
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SECTION I11 

ERROR SOURCES AND MODELS 

Two types of error sources, control and knowledge, should be considered 
to determine the HGA pointing accuracy. 

include antenna structural offset errors, sensor offsets, scals factors 

and telemetry resolution, and unknown parameters associateu with the NGA 

radiation pattern. 
the fixed errors can be compensated to enhance the pointing knowledge accuracy. 

The control-type error sourcea include limit cycle motion of the spacecraft 
and A P S  command and execution resolution. 

error sources are identified and characterized through mathematical models. 

The knowledge-type error sources 

Once these error sources and characteristics are identified, 

In the following, the knowledge-type 

The in-flight calibration of the HGA pointing required establishing 
an analytic model of the HGA radiation pattern. An accurate mathematical 

model of the peak of the X-band main lobe was developed. 
mente were planned only for the main lobe which ranged about two dogrees 
frola the antenna boresight (or equivalently from 0 to -10 dB in the aignal 
strength measurements). 

Calibration measiire- 

The main lobe radiation pattern was modeled by: 
2 

(1) 

where 

kl - antenna gain constant 
k2 = radiation pattern constant 

0 = antenna cone angle. 

The oignal strength measured at the ground station from an antenna whose 
boreeight lay of€ the Earth by the angle 9 is proportional to: 

The feasibility of this model was examined against the accurately 
measured radiation pattern of the HGA prior to launch. 

the model and the measured radiation pattern in the main lobe were confirmed 
Discrepancies between 
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t o  be less than 0.1 dB (la) and were treater; as a part of the measurement 

noise. 

voltages proportional to the signal strength of S- and X-band carrier frequenc!es 
averaged over five-second intervals (see keference 3 ) .  The voltages were 

multiplied by appropriate scale factors for conversion into dB, then quantized. 

The Automatic Gain Control (ACC) bias of the receiving station provided 

The HCA cone angle, 8, was determined using the apacecraft-Earth vector 
and the vector parallel to the HCA radiation beam. 
deternination provided a spacecraft-Earth vector, u , which was then expressed 
in the antenna coordinate system. 
transformations of v 

These coordinate systems and transformation matrices are describr;! in detail 

in Reference 4. 
is concerned vith investigation of error sources which are assumed to be 
time invariant once the spacecraft I s  launched. 

Ground-based radio orblt 
L 

E 
This was accomplished through successive 

in various spacecraft structurefixed coordinate systems. E 

They are suomarized in Table 1. The subsequent discussion 

The true coordinate systems, in general, differ from the nominal 

systems due to errors (denoted by z's) caused by spacecraft-navigation residual 

errors, errors arising in various onboard sensor electronics and telemetry 

channels, mechanical misalignments introduced during spacecraft fabrication 

and caused by gravitational environment change, and deformation of radiation 
pattern of the HCA. The composite effects of these errors may be completely 
represented by a skew symmetric matrix 

0 E3 -E2 

€2 -5 
O 4 

provided E's are small. 
individual error sources: 

Elements of this matrix are expressed In terms of 

5 

where 

t = coordinate transformation matrix (see Table 1) 

e - error parameter vector - 
JPL Technical Memorandum 33-740 
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TO WN 
+Z ROLL (c) 

TO OBJECT (v,) 

/ id, 

I / 
+ X PITCH 

CONE ANGLE OF OBJECT: THE ANGLE F R W  THE SPACECRAFT 
+ ROLL AXIS TO THE SPACECRAFT/ 
OBJECT VECTOR 

CLOCK ANGLE OF OBJECT: THE ANGLE MEASURED CLOCKWISE 
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AXIS/OBJECT PLANE 

Fig. 4 Celestial Coordinate System for 
Spacecraft Attitude Control 
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Furthermore, 8 is a l s o  given i n  terms of individual e r r o r  parameters 

where 

A 

5 = HGA boresight un i t  vector &ol(O,O,l) 

and 
A 

5 = spacecraft-Earth d i r ec t ion  i n  HGA coordinates 

The spacecraft-Earth d i r ec t ion  is given by 

i n  t h e  HGA coordinate system, where 
A 

v = spacecraft-Earth un i t  vector i n  the  spacecraft-centered celestial E 
coordinate system. 

Since c is  a known quantity,  t h e  rest of t h i s  sec t ion  descr ibes  the  
I 

e r r o r  sources which c o n s t i t u t e  t h e  e r r o r  vec tors  z ’ s .  

The spacecraft  body-fixed a’b’c’ coordinate system devia tes  from t h e  

celestial abc coordinate system because of spacecraf t  r o t a t i o n  within the  

deadband of t he  a t t i t u d e  con t ro l  system. 

The telemetry of p i tch ,  yaw and r o l l  a t t i t u d e  angles d i f f e r s  from 

the  t r u e  values. The a t t i t u d e  sensor n u l l  o f f s e t s  are t h e  dominant e r r o r  

sources in  t h e  e r r o r  vector e 1 

- 
e = col(z , z + z cosa cot6 - z sin0 cotBs) 
1 1 2’ 23 1 x s 2 x  

where 

a = clock angle of spacecraft  + X axis (-60 deg f o r  MVM’73). 
X 

Bs = cone angle of reference star 

(7) 

10 JPL Technical Memorandum 33-740 



'the descr ipt ions of t he  2's are summarized i n  Table 2. 

The t rue  b o m  deployed configuration deviated s l i g h t l y  from what had 

been planned due .o fabr ica t ion  e r r o r  and deploynumt in a h s t  zero gravi ty  

e n v i r o m n t .  TI - deviat ions are represented by 

and 
- 
e = col(0,  z5 ,  0) (9 1 3 

TWO e r ro r  sources associated wi th  the  boom ac tua tor  w e r e  considered. 

One, 2 

from fabr ica t ion  e r ror .  The other  e r ro r ,  z , was a discrepancy betveen 

telemetered boon angle and its t r u e  value, which included boon ac tua tor  

potentiometer n u l l  o f f s e t ,  ac tua tor  mechanical backlash, and telemetry da t a  

reso lu t ion  error. 

w a s  nonorthogonality between the  boom and dish ac tua tor  axes, resulting 6' 

7 

I n  d e f i n i q  the  t ruG antenna coordinate system two error sources were 
investigated.  

can be  adjusted by a small angle z 
be d i f f e ren t  from its tru.> value. 

potentiomet:er n u l l  o f f s e t ,  da ta  resolut ion,  and ac tua tor  mechanical backlash. 

Notiorthogonality among axes in t he  antenna coordinate system 

The telemetered dish angle value could 

9 

8' 
The e r r o r  denoted by z includes dish 

The e r r o r  sources a r i s i n g  i n  ground s t a t i o n  signal processing were 
mostly electron! and electro-magnetic i n  nature. The unknown paramecer, 
denoted by z , includes DC bias  d r i f t  In  ACC e lec t ronics ,  t i m e  averaging 

e r ro r  of s ' .pal  s t r r s g t h  meiaurement, and discrepancy of radio s igna l  space 

l o s s  constant from its n m i n a l  value. This error takes  a d i f f e r e n t  value a t  

each ca l ibra t ion .  

of environmentrl change. 

.. J 

"he HCA rad ia t ion  pa t te rn  width parameter varied as a function 

Hence, t h i s  parameter, being redafined as 

JPL I'echnical Memorandum 33-740 11 



Table 2 Error Sources ar.J Error Parameters 

Parameter Elrror Sources and 
Identif icatiorr Unknmn System Parameters Subsystem 

1 2 Pitch sensor null offset Attitude Control Subsystem 

Yaw sensor null offset Attitude Control Subsystem z2 

Roll sensor null offset Attitude Control Subsystem 3 z 

4 2 

5 z 

' 6  

7 z 

'8 

z9 

5 0  

11 2 

Born axis clock angle mounting Structures Subsystem 
misalignment 

Boom axis cone angle mounting 
misalignment 

Structures Subsystem 

Bo-Dish axes non-orthogonal- Structures Subsystem 
itY 

Boom actuator mechanical and 
potentiometer null offset Subsystem 

Articulation and Pointing 

Dish-HGA boresight non-orthog- Structures Subsystem 
onality 

Dish actuator mechanical and 
potentiometer null offset Subsystem 

Articulation and Pointing 

HCA radiation beam width HGA Subeystwp 

AGC Blas. HGA radiation 
pattern gain constant 

HGA SubsystedSignal Strength 
Measurement Subsystem 

12 JPL Technical Memorandum 33-740 



was included among the  e r r o r  parameters being solved for .  

e r r o r s  were ins ign i f i can t  cont r ibu tors  t o  t h e  HGA pointing e r ror .  

Spacecraft navigation 

The random noise power components denoted by rl add i t ive  to  t h e  s igna l  

s t rength  measurements were contributed by two sources: 

t o  t he  receiving antenna environment and the  o ther  w a s  i n d i r e c t l y  introduced, 

through t h e  computation of expected s igna l  strength,  from engineering telemetry 

noise and the  onboard antenna modeling r e s idua l  e r rors .  The antenna-originated 

noise i s  generally known in terms of noise temperature and i s  due t o  e lec t ro-  

magnetic r ad ia t ion  generated by celestial bodies within the  antenna beam, 

atmospheric absorption and re rad ia t ion ,  and absorption and r e rad ia t ion  by 

physical bodies surrounding the  antenna. 

of t h e  Deep Space Network (DSN) antenna when it is  aimed a t  cold sky, i.e., 

no major celestial sources around t h e  antenna boresight,  is given i n  Reference 5. 

The predicted antenna noise temperature f u r  t h e  period of November 1973 

through March 1974 based upon t h e  past  observation d a t a  w a s  35O Kelvin or 
equivalently 0.14 dB ( lu) .  
in a t t i t u d e  and ac tua tor  angle telemetry measurements mapped i n t o  noise i n  

expected value of s i g n a l  s t r eng th  measurements. The HGA modeling r e s idua l  

e r r o r s ,  measured t o  be less than 0.1 dBm a t  p r e l a u n c h  ca l ib ra t ion ,  w e r e  

a l s o  added t o  the  random noise  i n  tl-- s igna l  s t r eng th  measurement model. 

one w a s  inherent 

The weather-induced noise  temperature 

Random noise, assumed t o  be normally d i s t r ibu ted ,  

From Eqs. (1) through (12). one can express t h e  expected s igna l  s t r eng th  

measurement value i n  terms of ind iv idua l  e r r o r  parameters an3 the  system 

parameters (see Table 2) 

S = S(zi, T :t) + o ( t )  
5 j  

where 

i = (1,2,.-0,11) 

j = (1,2,.*.,5) 

Among the  system parameters, which uniquely defined the  orthogonal 

transformation T 

the  spacecraf t  f l i g h t ,  while I+,, Jig, I$ , 4 
telemetry channels and Bs from r e s u l t s  of spacecraft  o r b i t  determination. 

's (see Table 1). ax, a and 6 stayed constant throughout 

and 4 
5 j  

were obtained via engineering P Y  r 

JPL Technical Memorandum 33-740 13 
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The d i f fe rence  between the  observed s igna l  s t rength  and expected s igna l  s t rength ,  

and S, respect ively,  can be approximated by a l inea r  function of perturba- 'ob 
t ion ,  b z ,  of the  unknown parameters: 

6s = Sob - s 

as 
az 

= -  b z + n  

where 

as 
az - is evaluated a t  the  most updated values of parameters. 

Hence, a use of t he  K a h n  f i l t e r  algorithm enables so lu t ion  fo r  t he  unknown 

e r r o r  parameters z 's, t r e a t i n g  Eq. (13) as the  observation equation. i 
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SECTION IV 

IN-FLIGHT CALIBRATIOH STRATEGY AND EXECUTION 

The in- f l igh t  ca l ib ra t ion  was planned based upon computer s imulat ions 

The bas ic  planning philosophy was the  following: conducted p r io r  LO launch. 

(1) Cal ibrat ions be d i s t r ibu ted  widely i n  t i m e  so t h a t  the  g r e a t e s t  

range of ac tua tor  angles could be covered. 

t o  produce a uniform HGA point ing accuracy over t he  widest  ava i l ab le  

range of ac tua tor  angles and t o  obta in  b e t t e r  estimates of e r r o r  

parameters with eraall correlat ions.  

This was intended 

(2) A t  least one ca l ib ra t ion  be performed c lose  t o  each of t he  c r i t i ca l  

periods of t he  mission, i.e., encounter with the  t a r g e t  p lane ts ,  

which would insure  a high pointing accuracy throughout s1d-t 

,:ritical periods. 

(3) Calibrat ions be conducted without in te r fe rence  with the  o ther  

mission a c t i v i t i e s  having higher p r io r i ty .  

The o r i g i n a l  schedule ca l l ed  f o r  eleven ca l ib ra t ions ,  six before Venus 

encounter and f i v e  between Venus and Mercury. 

ca l ib ra t ions  performed during the  mission was nine,  four  before Venus encounter. 

S ta t ion  data  problems and spacecraf t  problem each eliminated one ca l ib ra t ion ,  

The ca l ib ra t ions  were perfomed during Deep Space S ta t ion  (DSS) 1 4  t racking 

s ince  t h i s  64-meter antenna was the  only one i n  the  DSN with X-band capabi l i ty .  

The ac tua l  schedule is shown i n  the  Appendix. 

t i on  planning which w e r e  considered include thlt following: 

The actual number of usefu l  

Operational aspects  of cal ibra-  

(1) Meeting the  desired point ing accuracy during c r i t i c a l  periods 

of t he  mission. 

(2) Adequate time fo r  da ta  processing p r i o r  t o  major updates of the  

HCA point ing p r o f i l e ,  

(3 )  Contingency ca l ib ra t ions  f o r  covering problem which might in- 

va l ida t e  a c r i t i c a l  ca l ibra t ion .  

(4) Manpower and t r a in ing  f o r  the  smooth operat ion of the ca l ib ra t ion  

sequence and data processing. 

JPL Technical Memorandum 33-740 15 



( 5 )  Full checkoL- of the facilities and software before testing and 

training. 

The lead time for major mission sequence updates for the MVN mission 

was fourteen working days which included four days for calibration processicg 
for final corrections and ten days for sequence implementation. 

tional constraints, the HGA profile was not redesigned during the mission 

but was corrected by a small translation of the total profile in both boom 
and dish after the first calibration. This was deemed sufficient for cruise 

(S-band) operations. 
the latest available pointing profile was used for ground commanding the 

HGA. 

Due to opera- 

During critical periods for the Radio Science experiment, 

Each calibration was performed by pointing the ;ICA nominally at Earth 
and then moving it in a box pattern and measuring signal strength variations 

at several points on the box. In this manner the X-band main lobe was moved 

such that the Earth received signal strength varied significantly. Analysis 
of these data revealed the true position of the Earth In antenna coordinates. 

The initial calibration pattern is shown in Figure 5, The box is 

plotted in gimbal coordinatss for the ten slews. 

the comnands and resulting actuator-angle deltas for the slews. 

CWI 18 means the actuator was slewed clockwise in the Incremental Mode 18 
steps of 0.04 deg each (0.72 deg total). 
backlash and point in the expected Earth direction, the actuators were slewed 
to each of the positions. 

be 0.1G deg, so when a change in direction occurred, four additional steps 
were included , 

Next to it are tabulated 
The terminology 

Following set-up slews to take out 

The actuator-internal backlash was expected to 

Analysis of the first two calibrations indicated a substantial amount 
of backlash existed in both the boom and dish linkages between the actuator 
output shaft and the antenna. 
quality and to evaluate the magnitude of the backlash, two new patterns were 

developed to produce data on this "actuator-external" backlash. 

were used beginning with the third calibration, 

To avoid degradation in calibration data 

These patterns 

One is illustrated in Figure 6. 
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4 1.44 deg 
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+ BooM 
GIMBAL 

Posit  ion A Boom A Dish 
- - 1 

CWI 18 - . 72  deg - 

CCWI 22  .88 - 
CCWI 18 .72 - 

- CWI 18 + .72 deg 

- CCWI 22  - -88 
- CCWI 18 - . 72  

CWI 22 - .88 - 
CWI 18 - . 72  

CWI 2 2  .88 - 
CCWI 22 .88 

Fig. 5 Initial HGA Calibration Pattern 

+ DISH r 
6 5 

+BOOM 
GIMBAL 

1 

1.4 

Posi t  ion A Boom A Dish 
1 CWI - - 
2 CWI 18 - .72 deg - 
3 
4 CCWI 50 2.00 - 
5 CWI 14 - .56 - 
6 - CCWI 50 -2.00 

CWI 14 .56 7 
8 CWI 35 -1.44 
9 - 

CWI 18 + .7- deg - 
kQ 

- 
- 

I 

CWI 18 . 7 2  

10 CCWI 32 1.28 

Fig. 6 HGA Calibration Pattern--Revised for Backlash 
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This approach resulted in a set of signal strength data which were 
taken consistently on one side of the backlash hysteresis curves as is illustrated 
in Figure 7. The data recorded at positions 1, 2, 3, 5, 7, 8 and 9 were 
used for pointing calibration. The data recorded at points 4, 5, 6 and 7 
were used for determination of external backlash magnitude. 

Typical signal strength measurements for one calibration which took 

Slews were on three-minute centers. about forty minutes are shown in Figure 8. 
Sharp rises and falls in the signal strength measurements represent tranoient 

responses to commanded slews, A time delay before, and an overshoot after, 
a transient response in signal strength measurements, each lasting for five 

to ten seconds, were observed. Apparently, the former was caused by a composite 
effect of signal lag in AGC electronics and time averaging of signal strength 
measurements, and the latter by underdamped characteristics of ACC electronics. 
To avoid false measurements, signal strength data immediately before and 
after a transient was removed from further processing, resulting in about 2.5 
minutes of valid data at each measurement point. 

(POSITIVE) ANGLE 
(b) HYSTERESIS IN DISH 

(POSITIVE) ANGLE 
COMMANDED TO SLEN 

4 ( t ~ i c K M s H  
IN BOOM 

(a) HYSTERESIS IN #)OM 

Fig. 7 HCA Slew Pattern for Backlaoh-Free In-Plight 
Calibration and Hysteresis Curves 
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SECTION V 
IN-FLIGHT CALIBRATION RESULTS 

This sec t ion  presents  the r e s u l t s  obtaineL from analys is  of t h t  r::libra- 

t i on  data.  Estimates of mean and variance of the boom and dish o f f s e t s  are 
given graphically f o r  each ca l ibra t ion .  

by the compensated ac tua tor  angles and ca l ibra t ion  accuracy. 

important epochs, i .e.,  near Earth, Venus and Mercury, Cal ibrat ion r e s u l t s  

are tabulated Final ly ,  antenna pointing accuracy is described as a function 

of mission time. 

ca l ib ra t ion  experience is given. 

These a r e  represented, respect ively,  

Then a t  three 

A summary of conclusions and recommendations based on the 

An understanding oi the  improved pointing capabi l i ty  r e s u l t i n g  from 

This the  ca l ib ra t ion  process may be obtained from inspect ion of Figure 9. 

f i gu re  shows d i rec t ions  and magnitudes of actuator  g i d a l  angle compensation 

immediately a f t d r  each ca l ibra t ion .  

compensation i n  the f i r s t  four ca l ib ra t ions  ind ica t e s  the convergent process 

of point ing e r r o r  correction. 

and a f t e r  the f l ip-f lop,  

is the  r e s u l t  of extrapolat ion beyond the ca l ibra ted  range achieved 38 days 

earlier a t  Cal ibrat ion 5 .  

beyond the ca l ibra ted  range. 

antenna point ing e r r o r  obtained befor ‘he f l ip-f lop w a s  thrown out. Subsequent 

ca l ib ra t ions  restored point ing ca l ib ra t ion  accuracy, r e su l t i ng  i n  a gradual 

decrease i n  magnitudes of angular compensation. Changes i n  signs of correct ion 

angles were cawed by possible  over-compensation i n  previous ca l ibra t ions ,  

The gradual decrease i n  magnitudes of 

Cal ibrat ions 7 and 8 were. done immediately before  

The increased e r r o r  i n  boom gimbal a t  Cal ibrat ion 7 

The f l ip - f lop  represented an even g rea t e r  excursion 

Therefore, accumulated knowledge about the 

A measure of the increasing accuracy of the  e s t i u a t e s  of the boom 

and dish o f f s e t s  during the ca l ib ra t ion  process is given in Figure 10, 
bratior.  accuracy is the mapping, i n t o  the antenna coordinate syetem, of the 

e f f e c t  on boresight point ing accuracy of the eleven parameters being estimated. 

I n  t h i s  f igure,  the upward slopes of the curves between two succeesive cali- 

bra t ions  were caused by time-varying elements of pointing accuracy evalua- 

t i on  functions,  

confidence i n  point ing the HGA as actuator  angles move out of the range over 

which thry had been cal ibrated.  

a degree of res tora t ion  of ca l ib ra t ion  accuracy in the dish and cross-dlrh 

Cali- 

This may a lso  be explained as a decrease i n  the level of 

The length of v e r t i c a l  l i n e s  reprerents  

20 JPL Technical Memorandum 33-740 
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Fig. 10 Time Evolution of HCA Pointing 
Calibration Accuracy 
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(defined as perpendicular t o  the dish) d i r ec t ions  accomplished at each calibra- 

tion. 

The a p r i o r i  condition with which t o  start the parameter estimation 

process w a s  determined based upon the pre-fl ight ca l ib ra t ion  r e s u l t s  (see 

Reference 6)  of the HGA r ad ia t ion  c h a r a c t e r i s t i c s  and the sowewhat degraded 

values of the  APS s t r u c t u r e  ca l ibra t ion .  The degradation w a s  required t o  

account f o r  poss ib le  adverse e f f e c t s  due t o  mechanical shock during launch 

and boom deployment. The a p o s t e r i o r i  condition which had r e su l t ed  from 

one ca l ib ra t ion  was used as the a p r i o r i  condition of the next except f o r  

variance and cor re la t ions  associated w i t h  the s i g n a l  s t r eng th  r e l a t ed  parameter 

(zll). The variance of z was set t o  1.0 (dBm) and co r re l a t ions  with o ther  

parameters t o  zero to  account f o r  l a rge  signal s t r eng th  measurement value 

2 
11 

change from the preceeding ca l ib ra t ion .  

The e r r o r  e l l i p s e s  associated wi th  ca l ib ra t ion  accuracy at launch, 

Venus and Mercur) are given i n  Figure 11. 

t i o n  accuracies of the dish and the cross-dish d i r ec t ions  were observed at 

Venus encounter. 

d i r ec t ion  w a s  g rea te r  than tha t  i n  the  cross-dish d i r ec t ion  by almost a f ac to r  

of 2, while almost i d e n t i c a l  po in t ing  accuracy i n  both d ish  and cross-dish 

d i r ec t ions  w a s  achieved a t  the Mercury encounter. 

is (a) t ha t  the  a p r i o r i  e r r o r  e l l ipse  was elongated i n  dish d i r ec t ion  by 

almost a f ac to r  of 3 and (b) t ha t  the l a rge r  angular range (see Figure 3) 
covered by the  boom ac tua tor  than covered by the d ish  ac tua tor  resu l ted  i n  

the higher ca l ib ra t ion  accuracy i n  the cross-dish d i rec t ion .  

S igni f icant  d i f fe rences  i n  calibra- 

The r e s u l t i n g  uncertainty of HGA pointing i n  the d ish  

The explanation f o r  t h i s  

Table 3 sununarizes the  estimated e r r o r  parameters and t h e i r  accuracies 

as evaluated a p r i o r i  and a t  the ca l ib ra t ions  c loses t  t o  launch, Venus encounter 

and Mercury encounter. It is seen from the t ab le  tha t  almost no imrovements 

on estimating the a t t i t u d e  cont ro l  subsystem re l a t ed  parameters were made, 

(zl, z2 and z ), while higher accuracy i n  es t imat ing  the parameters re levant  

t o  the  s t r u c t u r e  subsystem ( z 4 ,  z5 and z6) ,  the APS subsystem (z7, z8 and z 9 ) ,  

and the antenna r ad ia t ion  ( z  ) was achieved. The s i g n a l  s t r eng th  r e l a t ed  10 
parameter (zll) estimation accuracy was cons is ten t ly  obtained about 0.1 dBm 

( l o )  except f o r  Calibration 1. 

3 
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I n  the  Appendix is given a mre complete set of data. It prese%s 

estimated e r r o r  parareters and t h e i r  accuracies as evaluated a t  a l l  calibrations. 

Table  4 s-rites the  worst case HCA to ta l  pointing accuracy ui a 
function of mission tire f o r  X- and S-band. 

period. The knowledge type e r r o r  includes the  ca l ib ra t ion  r e s idua l  error. 
The control  type error Includes the  worst case a t t i t u d e  l i m i t  cyc le  m t i o n  

of t he  spacecraf t ,  co-d generation and approximation e r r o r  and arechanical 

backlash. 

Data is given f o r  each c a l l b r a t i o n  

Worst case was  se lec ted  as t he  criteria by which t o  evaluate  poin t ing  

because, as p a r t  of a continuous co.pmicat ion system, HCA point ing is of 

interest a t  a l l  times, not j u s t  during se lec ted  i n t e r v a l s  vhich can be optimized. 

For t h i s  reason, t he  total pointing error is the  stnu of a l l  the  ind iv idua l  

error contr ibut ions which can reasonably be expected t o  occur. 

discussion, explanation is given for se l ec t ion  of each parameter value as 

representing worst case, and mention is made of a more lltkely error value. 

In the  following 

The X-band res idua l  ca l ib ra t ion  e r r o r  is the  man boresight  po in t ing  

error reaaining a f t e r  a ca l ibra t ion ,  as evaluated a t  the  next ca l ibra t ion .  

This  is true except f o r  ca l ib ra t ions  5 ,  7 and 11. 

at Venus encounter between ca l lb ra t ions  5 and 7, the  f l ip-f lop following 

7, and the  lack  of a ca l ib ra t ion  a f t e r  11 required extrapolat ion of t h i s  

e r r o r  f o r  these three  ca l ibra t ions .  

performd,  the  res idua l  S-ban2 e r r o r  is simply the  sum of the  r e s idua l  X-band 

error and the  estimated separat ion between the  two boresights.  

The large geoPPetry change 

Since no S-band ca l ib ra t ion  per  se w a s  

The error contributed by the  a t t i t u d e  cont ro l  l i m i t  cycle  mPtion is  
the  sane f o r  both X-band and S-band. It is asslmred t h a t  a l l  three  axes are 
s iml t aneous ly  at t h e i r  worst 0.25 deg deadband edges. Obviously t h i s  Is a 
conservative assumption. I f  w e l l  behaved, two-sided, independent l i m i t  cycles  

i n  the  absence of external torque are assumed, a l l  th ree  axes should simulta- 
neously exceed 0.20 dag e r r o r  only 0.1% of the  t i m e .  

observed cha rac t e r i s t i c s  such as a t t i t u d e  channel cross-coupling and s o l a r  

pressure,  the  t r u e  e f f e c t  of t h i s  e r r o r  most of t he  time is much less than 

the  value s t a t ed  i n  the  table .  

Considering some f l i gh t -  
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Backlash became a major e r r o r  contr ibutor  on Mariner 10. Actuator 

backlash was about 0.16 deg per axis. 

in fe r r ed  from t h e  da t a  of Cal ibrat ions 3 through 11 w a s  0.25 deg in boom and 

0.10 deg i n  dish. 

backlash. The monotonic natura  of t he  cruise point ing p r o f i l e  and judicious 

command se l ec t ion  during cri t ical  periods fu r the r  ameliorated the  e f f e c t s  of 

backlash. 

and e a r l y  (before backlash ca l ibra t ion)  X-band point ing could have been as l a rge  

as 0.27 deg. 

In addi t ion  the  s t r u c t u r a l  backlash 

Use of Pos i t ion  Mode cont ro l  minimized the  e f f e c t  of ac tua tor  

However, i t  is reasonable t o  assume backlash e f f e c t s  on S-band 

Backlash e f f e c t s  on later li-band pair-ting were l imited t o  0.22 dag. 

HCA p r o f i l e  approximation and comnand update e r r o r s  are primarily 

due t o  operat ional  constraints .  

approxiaation of a piecewise linear f i t  t o  t h e  t r u e  Earth point ing d i r ec t ion  

as a function of time i n  boom and d i sh  coordinates. This is  i l l u s t r a t e d  

conceptually i n  Figure 12. 

between the  t rue  Earth d i r ec t ion  and the  ;decewise f i t .  

by increasing the  number of line segments i n  t h e  f i t .  

which w a s  loaded i n t o  the  spacecraf t  computer w a s  aimed a t  providing point ing 

accuracies s u f f i c i e n t  f o r  S-band cornmicat ion.  

imation e r r o r  was allowed t o  be  as l a rge  as 0.96 deg during cruise .  

update e r ro r  is a function of the  frequency of antenna point ing updates. 

more frequent the  update, t he  smaller the  update s i z e ,  u n t i l  t he  lower limit 

of the  actuator  s t e p  s i z e ,  0.125 deg, is reached. The collmanded s t e p  s ize  
during S-band operations ranged as l a rge  as 0.87 i n  boom and 0.37 de8 in dioh, 
This contributed 0.47 deg error. 

The ac tua tor  conmand p r o f i l e  is a "stairs tep" 

The p r o f i l e  approximation e r r o r  is the  d i f fe rence  

It can be minimized 

The antenna p r o f i l e  

Therefore t h e  p r o f i l e  a p p r o r  

The c0-d 

The 

The t o t a l  e f f e c t  of these two e r ro r s  was much smaller i n  X-band. 

X-band HCA pointing was optimized a t  DSN s t a t i o n  rise and updated once o r  
t w i c e .  

t o  0.12 deg. 

This s t ra tegy  l imited the combined p r o f i l e  and comnand update e r r o r  

The f i n a l  e r r o r  source considered is the  conunand reso lu t ion  e r ro r .  

Since the s t e p  s i z e  was 0.125 deg i n  the  Posi t ion Mode, the  e f f e c t  of one-half 

the s t e p  size per axle must be considered. This cont r ibu tes  0.09 dag e r ro r .  

To sumarize comnents with regard t o  Table 4, the  point ing e r r o r  number 
can be a d j u s t e d  based on assumptions concerning l i m i t  cycle  motion backlash 

e f f e c t s  and comnand s t ra tegy .  The t o t a l  e r r o r  numbers quoted i n  the  t a b l e  
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Fig. 12 HGA Command Generation Errors 

are a fa i r  representation of observed f l i g h t  performance including worst 

case l i m i t  cycle. 

Figure 1 3  i l l u s t r a t e s  pointing performance observed a t  a t i m e  when the  

p r o f i l e  was optimized (Mercury encounter) and the  a c t u a l  a f f e c t  of l i m i t  cycle 

motion is taken i n t o  account. 

representing the  d i f fe rence  between the boresight vec tor  and Earth vector 

is plo t ted .  

ten days earlier. Of the 78 points p lo t t ed ,  only s i x  have pointing e r r o r  

i n  excess of 0.5 deg. 

I n  the  f igu re  a l imi ted  number of po in ts  each 

Estimates of boresight pointing are 3ased on the las t  ca l ib ra t ion  

None is grea ter  than 0.7 deg. 

Based on the r e s u l t s  of the in- f l igh t  ca l ib ra t ion ,  the following 

conclusions can be drawn: 

(1) F e a s i b i l i t y  of in - f l igh t  c a l i b r a t i o n  of the  poin t ing  of a two-axis 

gimbaled antenna with an X-band t r ansmi t t e r  was demonstrated. 

(2)  Worst case poin t ing  cont ro l  accuracy of the antenna was s i g n i f i c a n t l y  

improved with the ca l ib ra t ion ,  from 2.41 deg a p r i o r i  t o  0.87 deg 

a t  Mercury encounter. 

JPL Technical Memorandum 33-740 29 



0 

0 

10 15 20 25 0 L----I -20 -19 -10 -5 EM 5 I 

' 

Y 
t 

-25 

TIYE RELATIVE TO ENCOliNTER, hrs 

Fig. 13 HGA Point ing Error a t  Mercury Encounter 

(3) The r e su l t an t  in - f l igh t  ca l ib ra t ion  accuracy can be  described by 

a 3u e r r o r  e l l i p s e  whose semi-major axis w a s  reduced from 130 

arc-minutes a p r i o r i  t o  5 arc-ninutes a t  Venus encounttr  and 
2 a r d n u t e s  a t  Mercury encounter. 

(4) I n  order  t o  maintain antenna point ing acceptable t o  Radio Science 

experimenters, i t  is necessary t o  implement HCA p r o f i l e  cor rec t ions  

based on each ca l ibra t ion .  Fa i lure  t o  do t h i s  on MVM r e su l t ed  

in degraded X-band da ta  although the  polnt ing f o r  S-band was 
acceptable. 

( 5 )  The ca l ib ra t ion  schedule must be f l e x i b l e  enough t o  allow f o r  

changes necessi ta ted by spacecraf t  surpr i ses .  

t h i s  on MVM was the  change caused by the  discovery of t he  s i g n i f i -  

cant  backlash. 

An example of 

( 6 )  Hzrdcopy and tape-recorded s t a t i o n  AGC voltage averaged over 

five-second i n t e r v a l s  should be  made avai lable .  

cr ibed these from a t e l ev i s ion  display. 

and o ignl f icant ly  increased ana lys i s  time. 

Analysts t rans-  

This introduced e r r o r  
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(7) Four working days were required to reduce data from one calibration. 

(8) A simple mathematical model was shown to be a sufficiently accurate 
representation of the HGA radiation pattern €or the main lobe. 
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APPETJDIX 

De ta i led  Cal ibrat ion Results 

In  t h i s  appendix is given more de ta i led  da ta  on the  ca l ibra t ion .  

gives  a sununary of when the  ca l ib ra t ion  events occurred with respect  t o  signi- 
f i c a n t  mission events. 

and t h e i r  accuracies as evaluated a t  each of the  ca l ibra t ions .  

Table A3 

Table A2 presents a sumnary of estimated e r r o r  parameter8 

Table Al: Calibrat ion Event Summary 

Event 

Launch 

Cal ibrat ion 1 
Calibrat ion 2 

Calibrat ion 4 
Calibrat ion 5 

Venus Encounter 

Cal ibrat ion 7 
Ca’ tbrat ion 8 

Cal ibrat ion 9 

Cal ibrat ion 10 

ca l ib ra t ion  11 

Mercury Encounter 

Date: Day, Year Day8 from Launch 

307, 1973 

326, 1973 

342, 1973 

4 ,  1974 

15, 1974 

36, 1974 

53, 1974 

53, 1974 

61, 1974 

71, 1974 

79, 1974 

89, 1974 

0 

19 

35 

62 

73 

94 

111 

111 

119 

129 

137 

14 7 

HGA Solution 

Primary 

Primary 

Primary 

Primary 

Primary 

Primary 

Primary 

Al te rna te  

Al te rna te  

Alternate 
Al t e rnot  e 

Alternate 
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